Characterizing Strong Measure Zero Sets in Polish Groups

Galvin Mycielski Solovay Theorem Revisited

Wolfgang Wohofsky

Vienna University of Technology (TU Wien) and Kurt Gödel Research Center, Vienna (KGRC)

wolfgang.wohofsky@gmx.at

Winter School in Abstract Analysis, section Set Theory Hejnice, Czech Republic, 26th Jan – 2th Feb 2013

Strong measure zero sets (in \mathbb{R})

For an interval $I \subseteq \mathbb{R}$, let $\lambda(I)$ denote its length.

Definition (well-known)

A set $X \subseteq \mathbb{R}$ is (Lebesgue) measure zero $(X \in \mathcal{N})$ iff for each positive real number $\varepsilon > 0$ there is a sequence of intervals $(I_n)_{n < \omega}$ of total length $\sum_{n < \omega} \lambda(I_n) \le \varepsilon$ such that $X \subseteq \bigcup_{n < \omega} I_n$.

Definition (Borel; 1919)

A set $X \subseteq \mathbb{R}$ is strong measure zero $(X \in \mathcal{SN})$ iff for each sequence of positive real numbers $(\varepsilon_n)_{n < \omega}$ there is a sequence of intervals $(I_n)_{n < \omega}$ with $\forall n \in \omega \ \lambda(I_n) \leq \varepsilon_n$ such that $X \subseteq [I_n]_{n < \omega}$ I_n .

Strong measure zero sets (in \mathbb{R})

For an interval $I \subseteq \mathbb{R}$, let $\lambda(I)$ denote its length.

Definition (well-known)

A set $X \subseteq \mathbb{R}$ is (Lebesgue) measure zero $(X \in \mathcal{N})$ iff for each positive real number $\varepsilon > 0$ there is a sequence of intervals $(I_n)_{n < \omega}$ of total length $\sum_{n < \omega} \lambda(I_n) \leq \varepsilon$ such that $X \subseteq \bigcup_{n < \omega} I_n$.

Definition (Borel; 1919)

A set $X \subseteq \mathbb{R}$ is strong measure zero $(X \in \mathcal{SN})$ iff for each sequence of positive real numbers $(\varepsilon_n)_{n<\omega}$ there is a sequence of intervals $(I_n)_{n<\omega}$ with $\forall n \in \omega \ \lambda(I_n) \leq \varepsilon_n$ such that $X \subseteq \bigcup_{n<\omega} I_n$.

Let (G, +) be a (abelian?) Polish group.

Let $\mathcal{U}(0)$ denote the system of neighborhoods of the neutral element 0.

(Slightly?) abusing notation, I use the expression "strong measure zero" for subsets of a topological group.

Officially, the following property is called "Rothberger bounded"

Definition

 $X \subseteq G$ is strong measure zero $(X \in \mathcal{SN}(G))$ if for every sequence $(U_n)_{n < \omega}$ of neighborhoods in $\mathcal{U}(0)$, there exists a sequence $(x_n)_{n < \omega}$ in G such that $X \subseteq \bigcup_{n < \omega} (x_n + U_n)$.

Let (G, +) be a (abelian?) Polish group.

Let $\mathcal{U}(0)$ denote the system of neighborhoods of the neutral element 0.

(Slightly?) abusing notation, I use the expression "strong measure zero" for subsets of a topological group.

Officially, the following property is called "Rothberger bounded"

Definition

 $X \subseteq G$ is strong measure zero $(X \in \mathcal{SN}(G))$ if for every sequence $(U_n)_{n < \omega}$ of neighborhoods in $\mathcal{U}(0)$, there exists a sequence $(x_n)_{n < \omega}$ in G such that $X \subseteq \bigcup_{n < \omega} (x_n + U_n)$.

Let (G, +) be a (abelian?) Polish group.

Let $\mathcal{U}(0)$ denote the system of neighborhoods of the neutral element 0.

(Slightly?) abusing notation, I use the expression "strong measure zero" for subsets of a topological group.

Officially, the following property is called "Rothberger bounded"

Definition

 $X \subseteq G$ is strong measure zero $(X \in \mathcal{SN}(G))$ if for every sequence $(U_n)_{n < \omega}$ of neighborhoods in $\mathcal{U}(0)$, there exists a sequence $(x_n)_{n < \omega}$ in G such that $X \subseteq \bigcup_{n < \omega} (x_n + U_n)$.

Let (G, +) be a (abelian?) Polish group.

Let $\mathcal{U}(0)$ denote the system of neighborhoods of the neutral element 0.

(Slightly?) abusing notation, I use the expression "strong measure zero" for subsets of a topological group.

Officially, the following property is called "Rothberger bounded":

Definition

 $X \subseteq G$ is strong measure zero $(X \in \mathcal{SN}(G))$ if for every sequence $(U_n)_{n < \omega}$ of neighborhoods in $\mathcal{U}(0)$, there exists a sequence $(x_n)_{n < \omega}$ in G such that $X \subseteq \bigcup_{n < \omega} (x_n + U_n)$.

Let (G, +) be a (abelian?) Polish group.

Let $\mathcal{U}(0)$ denote the system of neighborhoods of the neutral element 0.

(Slightly?) abusing notation, I use the expression "strong measure zero" for subsets of a topological group.

Officially, the following property is called "Rothberger bounded":

Definition

 $X \subseteq G$ is strong measure zero $(X \in \mathcal{SN}(G))$ if for every sequence $(U_n)_{n < \omega}$ of neighborhoods in $\mathcal{U}(0)$, there exists a sequence $(x_n)_{n < \omega}$ in G such that $X \subseteq \bigcup_{n < \omega} (x_n + U_n)$.

Let (G, +) be a (abelian?) Polish group.

Let $\mathcal{U}(0)$ denote the system of neighborhoods of the neutral element 0.

(Slightly?) abusing notation, I use the expression "strong measure zero" for subsets of a topological group.

Officially, the following property is called "Rothberger bounded":

Definition

 $X \subseteq G$ is strong measure zero $(X \in \mathcal{SN}(G))$ if for every sequence $(U_n)_{n < \omega}$ of neighborhoods in $\mathcal{U}(0)$, there exists a sequence $(x_n)_{n < \omega}$ in G such that $X \subseteq \bigcup_{n < \omega} (x_n + U_n)$.

Let $\mathcal{M}(G)$ be the (translation-invariant) σ -ideal of meager subsets of G.

For $X, M \subseteq G$, let $X + M = \{x + m : x \in X, m \in M\}$.

Definition

 $X\subseteq G$ meager-shiftable $(X\in \mathcal{M}^*(G))$ if for every meager set $M\in \mathcal{M}(G)$, we have $X+M\neq G$.

Equivalently: $\forall M \in \mathcal{M}(G) \ \exists t \in G \text{ s.t. } (t+M) \cap X = \emptyset.$

Theorem (Galvin, Mycielski, Solovay; 1973)

A set $X \subseteq \mathbb{R}$ is strong measure zero if and only if for every meager set $M \in \mathcal{M}(\mathbb{R})$, $X + M \neq \mathbb{R}$, i.e. $\mathcal{M}^*(\mathbb{R}) = \mathcal{S}\mathcal{N}(\mathbb{R})$.

The same holds for $(2^{\omega},+)$, the 1-dimensial torus $(S^1,+)=(\mathbb{R}/\mathbb{Z},+)$, ...

Let $\mathcal{M}(G)$ be the (translation-invariant) σ -ideal of meager subsets of G.

For $X, M \subseteq G$, let $X + M = \{x + m : x \in X, m \in M\}$.

Definition

 $X \subseteq G$ meager-shiftable $(X \in \mathcal{M}^*(G))$ if for every meager set $M \in \mathcal{M}(G)$, we have $X + M \neq G$.

Equivalently: $\forall M \in \mathcal{M}(G) \ \exists t \in G \text{ s.t. } (t+M) \cap X = \emptyset.$

Theorem (Galvin, Mycielski, Solovay; 1973)

A set $X \subseteq \mathbb{R}$ is strong measure zero if and only if for every meager set $M \in \mathcal{M}(\mathbb{R})$, $X + M \neq \mathbb{R}$, i.e., $\mathcal{M}^*(\mathbb{R}) = \mathcal{SN}(\mathbb{R})$.

The same holds for $(2^{\omega},+)$, the 1-dimensial torus $(S^1,+)=(\mathbb{R}/\mathbb{Z},+)$, ...

Let $\mathcal{M}(G)$ be the (translation-invariant) σ -ideal of meager subsets of G.

For $X, M \subseteq G$, let $X + M = \{x + m : x \in X, m \in M\}$.

Definition

 $X \subseteq G$ meager-shiftable $(X \in \mathcal{M}^*(G))$ if for every meager set $M \in \mathcal{M}(G)$, we have $X + M \neq G$.

Equivalently: $\forall M \in \mathcal{M}(G) \ \exists t \in G \text{ s.t. } (t+M) \cap X = \emptyset.$

Theorem (Galvin, Mycielski, Solovay; 1973)

A set $X \subseteq \mathbb{R}$ is strong measure zero if and only if for every meager set $M \in \mathcal{M}(\mathbb{R})$, $X + M \neq \mathbb{R}$, i.e. $\mathcal{M}^*(\mathbb{R}) = \mathcal{SN}(\mathbb{R})$.

The same holds for $(2^\omega,+)$, the 1-dimensial torus $(S^1,+)=(\mathbb{R}/\mathbb{Z},+)$, \dots

Let $\mathcal{M}(G)$ be the (translation-invariant) σ -ideal of meager subsets of G.

For $X, M \subseteq G$, let $X + M = \{x + m : x \in X, m \in M\}$.

Definition

 $X \subseteq G$ meager-shiftable $(X \in \mathcal{M}^*(G))$ if for every meager set $M \in \mathcal{M}(G)$, we have $X + M \neq G$.

Equivalently: $\forall M \in \mathcal{M}(G) \ \exists t \in G \text{ s.t. } (t+M) \cap X = \emptyset.$

Theorem (Galvin, Mycielski, Solovay; 1973)

A set $X \subseteq \mathbb{R}$ is strong measure zero if and only if for every meager set $M \in \mathcal{M}(\mathbb{R})$, $X + M \neq \mathbb{R}$, i.e., $\mathcal{M}^*(\mathbb{R}) = \mathcal{SN}(\mathbb{R})$.

The same holds for $(2^\omega,+)$, the 1-dimensial torus $(S^1,+)=(\mathbb{R}/\mathbb{Z},+)$, \dots

Let $\mathcal{M}(G)$ be the (translation-invariant) σ -ideal of meager subsets of G.

For $X, M \subseteq G$, let $X + M = \{x + m : x \in X, m \in M\}$.

Definition

 $X \subseteq G$ meager-shiftable $(X \in \mathcal{M}^*(G))$ if for every meager set $M \in \mathcal{M}(G)$, we have $X + M \neq G$.

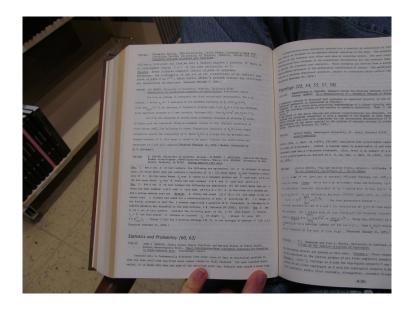
Equivalently: $\forall M \in \mathcal{M}(G) \ \exists t \in G \text{ s.t. } (t+M) \cap X = \emptyset.$

Theorem (Galvin, Mycielski, Solovay; 1973)

A set $X \subseteq \mathbb{R}$ is strong measure zero if and only if for every meager set $M \in \mathcal{M}(\mathbb{R})$, $X + M \neq \mathbb{R}$, i.e., $\mathcal{M}^*(\mathbb{R}) = \mathcal{SN}(\mathbb{R})$.

The same holds for $(2^{\omega}, +)$, the 1-dimensial torus $(S^1, +) = (\mathbb{R}/\mathbb{Z}, +)$, ...

◆ロト ◆個 ト ◆ 差 ト ◆ 差 ・ 釣 へ @



extensions of T are also computed. (Received February 15, 1979.) (Author introduced by Sy D. Friedman).

797-E25 F. GALVIN, University of Colorado, Boulder, CO 80309; J. MYCIELSKI, Institut des Hautes Etudes Scientifiques, 91440 Bures-Sur-Yvette, France; R.M. SOLOVAY, University of California, Berkeley, CO 49720. Strong measure zero sets.

Thm. 1. For a set X of real numbers, the following are equivalent: (1) X is strongly of measure zero; (2) every dense open set contains a translate of X; (3) every dense G_6 set contains a translate of X; (4) for every dense G_6 set D there is a nonempty perfect set P such that X+P+D; (3) for every dense G_6 set D there are real numbers a $\neq 0$ and b such that A+D+D.

Thm. 2. For a set X of real numbers the following are equivalent: (6) for every dense open set D there are real numbers a $\neq 0$ and b such that A+D+D; (7) X is the union of a bounded set and a strong measure zero set. Remarks. K. Prikry had noted (3) = (2) = (1) and asked if the converses hold. J. Fickett had asked for a characterization of sets X satisfying (6). J. C. Morgan II has kindly informed us that Thm. 1 answers negatively a question of W. Sterpiński, Un théorème de la théorie générale des ensembles et ses applications, C.R. Varsovie 28 (1935), 131-135. Thm. 3. Let X be a set of real numbers. Consider the following game: at the n-th move player I chooses $\binom{n}{n} > 0$ and then player II chooses an interval J_n of length $\binom{n}{n}$; player II wins iff $X \in \bigcup_{n=1}^{m} J_n$. Player I (II) has a winning strategy iff X is not strongly of measure 0 (|X| < w). (Received February 15, 1979.)

Statistics and Probability (60, 62)

*79T-F6 JOHN D. EMERSON, Sidney Farber Cancer Institute and Harvard School of Public Health,

The "easy direction" of the GMS theorem only uses separability:

Proposition

Let (G, +) be a separable group. Then $\mathcal{M}^*(G) \subseteq \mathcal{SN}(G)$.

The "difficult direction" of the usual GMS theorem (for \mathbb{R},\ldots) makes essential use of the fact that the torus \mathbb{R}/\mathbb{Z} is compact (and then "transfers" the result to \mathbb{R}).

Actually, compactness is already sufficient:

$\mathsf{Theorem}$

Let (G, +) be a compact group. Then $\mathcal{M}^*(G) \supseteq \mathcal{SN}(G)$.

Definitior

A Polish group (G, +) is a Galvin Mycielski Solovay group (GMS group) ithe GMS theorem still holds, i.e., if ZFC proves that $\mathcal{M}^*(G) = \mathcal{SN}(G)$.

The "easy direction" of the GMS theorem only uses separability:

Proposition

Let (G, +) be a separable group. Then $\mathcal{M}^*(G) \subseteq \mathcal{SN}(G)$.

The "difficult direction" of the usual GMS theorem (for \mathbb{R}, \ldots) makes essential use of the fact that the torus \mathbb{R}/\mathbb{Z} is compact (and then "transfers" the result to \mathbb{R}).

Actually, compactness is already sufficient:

$\mathsf{Theorem}$

Let (G, +) be a compact group. Then $\mathcal{M}^*(G) \supseteq \mathcal{SN}(G)$.

Definition

A Polish group (G, +) is a Galvin Mycielski Solovay group (GMS group) ithe GMS theorem still holds, i.e., if ZFC proves that $\mathcal{M}^*(G) = \mathcal{SN}(G)$.

The "easy direction" of the GMS theorem only uses separability:

Proposition

Let (G, +) be a separable group. Then $\mathcal{M}^*(G) \subseteq \mathcal{SN}(G)$.

The "difficult direction" of the usual GMS theorem (for \mathbb{R}, \ldots) makes essential use of the fact that the torus \mathbb{R}/\mathbb{Z} is compact (and then "transfers" the result to \mathbb{R}).

Actually, compactness is already sufficient:

Theorem

Let (G, +) be a compact group. Then $\mathcal{M}^*(G) \supseteq \mathcal{SN}(G)$.

Definition

A Polish group (G,+) is a Galvin Mycielski Solovay group (GMS group) in the GMS theorem still holds, i.e., if ZFC proves that $\mathcal{M}^*(G) = \mathcal{SN}(G)$.

The "easy direction" of the GMS theorem only uses separability:

Proposition

Let (G, +) be a separable group. Then $\mathcal{M}^*(G) \subseteq \mathcal{SN}(G)$.

The "difficult direction" of the usual GMS theorem (for \mathbb{R}, \ldots) makes essential use of the fact that the torus \mathbb{R}/\mathbb{Z} is compact (and then "transfers" the result to \mathbb{R}).

Actually, compactness is already sufficient:

Theorem

Let (G, +) be a compact group. Then $\mathcal{M}^*(G) \supseteq \mathcal{SN}(G)$.

Definition

A Polish group (G,+) is a Galvin Mycielski Solovay group (GMS group) if the GMS theorem still holds, i.e., if ZFC proves that $\mathcal{M}^*(G) = \mathcal{SN}(G)$.

Corollary

Each compact Polish group (G, +) is GMS, i.e., $\mathcal{M}^*(G) = \mathcal{SN}(G)$.

Definition

Let's say a Polish group (G, +) is nicely σ -compact (different versions) if

- there exists a countable subgroup $U \subseteq G$ s.t. (G/U, +) is compact
- there exists a selector $T \subseteq G$ for G/U s.t. either
 - \bigcirc ∂T (∩T) is nowhere dense (meager?) in G
 - ② $h[\partial T \cap T]$ is nowhere dense (meager?) as a subset of (G/U, +), where $h: G \longrightarrow G/U$ is the canonical mapping.

Theorem

Corollary

Each compact Polish group (G, +) is GMS, i.e., $\mathcal{M}^*(G) = \mathcal{SN}(G)$.

Definition

Let's say a Polish group (G, +) is nicely σ -compact (different versions) if

- there exists a countable subgroup $U \subseteq G$ s.t. (G/U, +) is compact
- there exists a selector $T \subseteq G$ for G/U s.t. either
 - ① $\partial T(\cap T)$ is nowhere dense (meager?) in G
 - $h[\partial T \cap T]$ is nowhere dense (meager?) as a subset of (G/U, +), where $h: G \longrightarrow G/U$ is the canonical mapping.

Theorem

Corollary

Each compact Polish group (G, +) is GMS, i.e., $\mathcal{M}^*(G) = \mathcal{SN}(G)$.

Definition

Let's say a Polish group (G, +) is nicely σ -compact (different versions) if

- there exists a countable subgroup $U \subseteq G$ s.t. (G/U, +) is compact
- there exists a selector $T \subseteq G$ for G/U s.t. either
 - \bigcirc $\partial T(\cap T)$ is nowhere dense (meager?) in \bigcirc
 - ② $h[\partial T \cap T]$ is nowhere dense (meager?) as a subset of (G/U, +), where $h: G \longrightarrow G/U$ is the canonical mapping.

Theorem

Corollary

Each compact Polish group (G, +) is GMS, i.e., $\mathcal{M}^*(G) = \mathcal{SN}(G)$.

Definition

Let's say a Polish group (G, +) is nicely σ -compact (different versions) if

- there exists a countable subgroup $U \subseteq G$ s.t. (G/U, +) is compact
- there exists a selector $T \subseteq G$ for G/U s.t. either
 - **1** $\partial T(\cap T)$ is nowhere dense (meager?) in G
 - ② $h[\partial T \cap T]$ is nowhere dense (meager?) as a subset of (G/U, +), where $h: G \longrightarrow G/U$ is the canonical mapping.

Theorem

Corollary

Each compact Polish group (G, +) is GMS, i.e., $\mathcal{M}^*(G) = \mathcal{SN}(G)$.

Definition

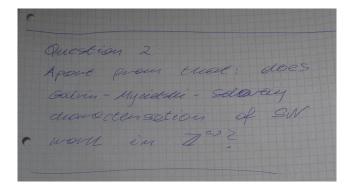
Let's say a Polish group (G, +) is nicely σ -compact (different versions) if

- there exists a countable subgroup $U \subseteq G$ s.t. (G/U, +) is compact
- there exists a selector $T \subseteq G$ for G/U s.t. either
 - **1** $\partial T(\cap T)$ is nowhere dense (meager?) in G
 - ② $h[\partial T \cap T]$ is nowhere dense (meager?) as a subset of (G/U, +), where $h: G \longrightarrow G/U$ is the canonical mapping.

Theorem

Marcin Kysiak's question

Marcin Kysiak asked me at the Winterschool 2011 here in Hejnice...

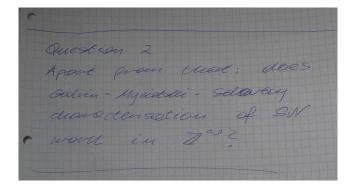


Question (Marcin Kysiak)

Is $(\mathbb{Z}^{\omega},+)$ a GMS group, i.e., does $\mathcal{M}^*(\mathbb{Z}^{\omega})=\mathcal{SN}(\mathbb{Z}^{\omega})$ hold in general?

Marcin Kysiak's question

Marcin Kysiak asked me at the Winterschool 2011 here in Hejnice...



Question (Marcin Kysiak)

Is $(\mathbb{Z}^{\omega},+)$ a GMS group, i.e., does $\mathcal{M}^*(\mathbb{Z}^{\omega})=\mathcal{SN}(\mathbb{Z}^{\omega})$ hold in general?

Answer: No! (In other words: consistently, $\mathcal{M}^*(\mathbb{Z}^\omega) \neq \mathcal{SN}(\mathbb{Z}^\omega)$.)

Proposition

ZFC proves that $[\mathbb{Z}^{\omega}]^{\leq \aleph_0} \subseteq \mathcal{M}^*(\mathbb{Z}^{\omega}) \subseteq \mathcal{SN}(\mathbb{Z}^{\omega})$

It is quite easy to see that the usual BC (i.e., $\mathcal{SN}(2^{\omega}) = [2^{\omega}]^{\leq \aleph_0}$) is equivalent to the "Borel Conjecture on \mathbb{Z}^{ω} " (i.e., $\mathcal{SN}(\mathbb{Z}^{\omega}) = [\mathbb{Z}^{\omega}]^{\leq \aleph_0}$)

Proposition

Assume BC. Then $[\mathbb{Z}^{\omega}]^{\leq \aleph_0} = \mathcal{M}^*(\mathbb{Z}^{\omega}) = \mathcal{SN}(\mathbb{Z}^{\omega})$.

Theorem

Answer: No! (In other words: consistently, $\mathcal{M}^*(\mathbb{Z}^\omega) \neq \mathcal{SN}(\mathbb{Z}^\omega)$.)

Proposition

ZFC proves that $[\mathbb{Z}^{\omega}]^{\leq \aleph_0} \subseteq \mathcal{M}^*(\mathbb{Z}^{\omega}) \subseteq \mathcal{SN}(\mathbb{Z}^{\omega})$.

It is quite easy to see that the usual BC (i.e., $\mathcal{SN}(2^{\omega}) = [2^{\omega}]^{\leq \aleph_0}$) is equivalent to the "Borel Conjecture on \mathbb{Z}^{ω} " (i.e., $\mathcal{SN}(\mathbb{Z}^{\omega}) = [\mathbb{Z}^{\omega}]^{\leq \aleph_0}$).

Proposition

Assume BC. Then $[\mathbb{Z}^{\omega}]^{\leq \aleph_0} = \mathcal{M}^*(\mathbb{Z}^{\omega}) = \mathcal{SN}(\mathbb{Z}^{\omega}).$

Theorem

Answer: No! (In other words: consistently, $\mathcal{M}^*(\mathbb{Z}^{\omega}) \neq \mathcal{SN}(\mathbb{Z}^{\omega})$.)

Proposition

ZFC proves that $[\mathbb{Z}^{\omega}]^{\leq \aleph_0} \subseteq \mathcal{M}^*(\mathbb{Z}^{\omega}) \subseteq \mathcal{SN}(\mathbb{Z}^{\omega})$.

It is quite easy to see that the usual BC (i.e., $\mathcal{SN}(2^{\omega}) = [2^{\omega}]^{\leq \aleph_0}$) is equivalent to the "Borel Conjecture on \mathbb{Z}^{ω} " (i.e., $\mathcal{SN}(\mathbb{Z}^{\omega}) = [\mathbb{Z}^{\omega}]^{\leq \aleph_0}$).

Proposition

Assume BC. Then $[\mathbb{Z}^{\omega}]^{\leq \aleph_0} = \mathcal{M}^*(\mathbb{Z}^{\omega}) = \mathcal{SN}(\mathbb{Z}^{\omega}).$

Theorem

Answer: No! (In other words: consistently, $\mathcal{M}^*(\mathbb{Z}^{\omega}) \neq \mathcal{SN}(\mathbb{Z}^{\omega})$.)

Proposition

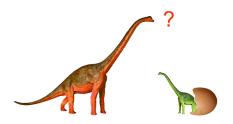
ZFC proves that $[\mathbb{Z}^{\omega}]^{\leq \aleph_0} \subseteq \mathcal{M}^*(\mathbb{Z}^{\omega}) \subseteq \mathcal{SN}(\mathbb{Z}^{\omega})$.

It is quite easy to see that the usual BC (i.e., $\mathcal{SN}(2^{\omega}) = [2^{\omega}]^{\leq \aleph_0}$) is equivalent to the "Borel Conjecture on \mathbb{Z}^{ω} " (i.e., $\mathcal{SN}(\mathbb{Z}^{\omega}) = [\mathbb{Z}^{\omega}]^{\leq \aleph_0}$).

Proposition

Assume BC. Then $[\mathbb{Z}^{\omega}]^{\leq \aleph_0} = \mathcal{M}^*(\mathbb{Z}^{\omega}) = \mathcal{SN}(\mathbb{Z}^{\omega}).$

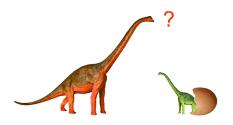
Theorem



Question

Is
$$[\mathbb{Z}^{\omega}]^{\leq \aleph_0} = \mathcal{M}^*(\mathbb{Z}^{\omega}) \subsetneq \mathcal{SN}(\mathbb{Z}^{\omega})$$
 consistent?

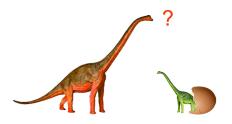
Thanks to Thilo Weinert for a lot of interesting discussions . .



Question

Is
$$[\mathbb{Z}^{\omega}]^{\leq \aleph_0} = \mathcal{M}^*(\mathbb{Z}^{\omega}) \subsetneq \mathcal{SN}(\mathbb{Z}^{\omega})$$
 consistent?

Thanks to Thilo Weinert for a lot of interesting discussions . .



Question

Is
$$[\mathbb{Z}^{\omega}]^{\leq \aleph_0} = \mathcal{M}^*(\mathbb{Z}^{\omega}) \subsetneq \mathcal{SN}(\mathbb{Z}^{\omega})$$
 consistent?

Thanks to Thilo Weinert for a lot of interesting discussions . . .

Thank you for your attention and enjoy the Winter School...

Hejnice 2011

Thank you for your attention and enjoy the Winter School...

Hejnice 2011

Thank you for your attention and enjoy the Winter School...

Hejnice 2011

